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Jumps in layered miscible fluids 
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Experiments with hydraulic jumps in a layered flow with a small density difference 
a t  the interface are described. Two different configurations are examined, with shear 
between the fluids either upstream or downstream of the jump. It is shown that when 
the shear stress on all interfaces is small enough for there to be no mixing either the 
theory which assumes hydrostatic pressure on the face of the jump or that which 
assumes energy conservation in one of the layers describes the results. I n  the 
experiments for a jump in the lee of a towed obstacle this condition is always satisfied, 
but for a jump advancing into stationary layers i t  is only satisfied when the ratio 
of the height behind the jump to that in front is less than about 2. Beyond this limit 
there is mixing behind the first wave of the undular jump and the flow behaves like 
the head of a gravity current. The theory with energy conservation in one layer is 
extended to the case of a stationary jump, and for this case it is shown that for a 
given downstream control an approximate value of the fluid entrained can be 
computed. 

1. Introduction 
Hydraulic jumps and surges (moving jumps) in open channels have considerable 

importance in civil engineering and have been studied for some time (Henderson 
1966). In  both flows air may be entrained through the air-water interface by the 
gravitational instabilities behind the steep face of the jump. This air is, however, 
detrained downstream of the abrupt change in depth. This release means that the 
conditions far downstream of the jump are unaffected by the air entrainment. With 
layered fluids such as flows in the atmosphere or in lakes or cooling ponds there are 
also abrupt changes in layer depths. These jumps may also be stationary or moving, 
but in this case fluid that is entrained is not released but remains in the flowing fluid 
downstream of the jump. In  the atmosphere these jumps have been observed by 
Schweitzer (1953), Ball (1959), Lied (1966), Clarke, Smith & Reid (1981) and others. 

When the depth change across the jump is small both the shear stress between the 
layers and the interfacial slopes are sufficiently small for the entrainment to be 
negligible and the jump to resemble an undular jump in an open channel. However, 
for large depth changes a shear-flow instability occurs. This is illustrated in figure 1 .  
In  figure l ( a )  a jump is advancing into a stationary fluid. The shear stress and 
hence the mixing is significant downstream of the maximum jump height. This 
implies that the conditions far downstream of the jump are affected by fhe mixing. 
I n  figure 1 (b ) ,  where an obstacle is moved through a two-layered fluid the maximum 
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(b  ) 

FIGURE 1. (a) A jump advancing to the right into a layer of fluid 0.3 cm deep. The total depth y, + yz 
of the layers is 27 em, g' is 11.5 cm/s2 and the gate was opened to 8 cm. In  this case the velocity 
in both layers ahead of the jumps is zero, but the shear instability behind the head means the jump 
behaves as a gravity current. (b )  The jump formed behind an obstacle moving to the left. In this 
case the mean velocity in both layers behind the jump are zero and the shear is ahead of the jump. 
Note that the arrow indicates the mixing of the dye in the Iower layer. 

shear stress and the possibility of mixing in the supercritical region occurs ahead of 
the jump. This affects the conditions upstream of the major abrupt change in level. 

I n  this paper the two theories that  are used for non-entraining jumps are described, 
and the reasons why they give similar results are discussed. Experiments are then 
described for the case of a jump that forms downstream of a towed obstacle and for 
a jump advancing into a stationary fluid. In  the first case the shear stress a t  the 
interface is sufficiently small for the theory to be applicable over the range of the 
experimental data, while in the second the theory is only applicable until a shear-flow 
instability occurs. Finally, the more recent theory is applied to an entraining jump 
and i t  is shown that the condition for the jump to be stationary enables us to compute, 
for given downstream conditions, the amount of entrainment. 

2. Theory 
Long (1954) carried out an extensive experimental study of the flow of two 

immiscible layers over a towed obstacle. He was able to determine both analytically 
and experimentally the regions in which a range of flow phenomena including 
hydraulic jumps occurred. Yih & Guha (1955) focused on the relationship between 
the conditions upstream and downsteam of a jump. They considered the flow of two 
layers over a horizontal plane surface for the case where there is a free upper surface. 
Other papers (Long 1970; Hayakawa 1970; Mehrotra 1973; Mehrotra & Kelley 1973; 
Raines & Davies 1980) deal with the case where the upper and lower layers arc 
confined between horizontal solid upper and lower surfaces as illustrated in figure 2. 
I n  this figure the duct depth is B and the discharge and densities in the upper and 
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FIGURE 2. Thr nomenclature for the internal jump. 

lower layers are qu, yQ, pu and pd respectively, and t'he depths of the lower and upper 
layers upstream and downstream of the jump are respectively yl, D--y1, yz and D - yz. 

Yih & Guha (1955) and the other investigators referred to above assumed that the 
fluids did not mix, there was no shear stress a t  the surface between the two 
fluids and the mean pressure on the surface of the jump ( A ,  B ;  figure 2) was 
+(L)-yy,+ h,+ D- yz+ h 2 ) ,  where h, and h, are the static heads on the upper surface 
of the duct upstream and downstream of thc jump. These assumptions enable the 
flow-force equation to be used for each layer and a solution to be obtained. 

For stationary entraining jumps in flowing layers Macagno & Macagno (1975) used 
Yih & Guha's relationships with a hypothesis for entrainment and subsequent mixing. 
They computed the energy loss for a non-mixing jump and proposed that a constant 
proportion a of this was the power available for entrainment. They assumed that 
practically all the entrainment took place over a short length at the foot of the jump 
and that all of the excess of production over dissipation in this region was available 
for entrainment. The constant a was determined from experimental measurements 
of hydraulic jumps in air. 

The method then was to use the Yih & Guha relationships to determine the energy 
loss AE in a non-mixing jump, and then to assume that a AE was the power available 
for entrainment. They then computed the changes that the entrainment effectively 
induces in the oncoming flow. This led to new inlet values of depths, discharges and 
densities and these were used for the final conjugate quantities. 

Yih & Guha's theory has been used frequently and is well known. The more recent 
theory of Chu & Baddour (1977) is less well known and will be briefly described before 
discussing the results obtained from both theories. 

A jump in two coflowing layers consists of an expansion in one layer and a similar 
contraction in the other. The angle of contraction is not large, and for jumps in which 
no mixing occurs the interface between the layers is relatively smooth. Dye-streak 
observations suggest that over the short distance of the jump the energy losses in 
the contracting layer are likely to he an order of magnitude less than that in the 
expanding layer. Indeed, dye placed in the contracting layer upstream of the jump 
remains relatively unmixed downstream of the jump, whereas dye placed in a similar 
position in the expanding layer becomes mixed throughout the lower layer downstream 
of the jump (figure 1 b) .  Further, if wall friction is negligible, i t  is reasonable to assume 
that the energy losses in the contracting Iaycr are small and constancy of flow force 
for the system of both layers. These assumptions lead to a particularly simple 
conservation relationship. 

The case where the oxpanding layer is on the lower surface (a jump) is dealt with 
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here, and the case where the expanding layer is adjacent to the upper surface (a drop) 
can be handled in the same simple manner. 

For the jump illustrated in figure 2 the flow force per unit width is 

Pu Y: 
Y1 D-Yl 

pugh,, D + @ " g D 2  + $ ( p E - p u )  g-y; +@+---- = S ,  

where S is a constant. The Bernoulli equation for the upper layer with datum taken 
at  the bottom of the lower layer is 

where E, is the total head of the upper layer. Eliminating h between (1) and (2), 
defining 

and noting that when there is no mixing these are conserved quantities, we obtain 

where 

and 

is a modified flow force. 
The difference AE in the Bernoulli constant in the lower layer on either side of the 

jump can then be computed using (3) and the appropriate energy equation, and the 
total head change be, over the jump is then given by the difference in the fluxes 
of energy across the jump. Since there is no loss assumed in the upper layer, this is 

lAET1l = utyllAE/ 

, (4) 
2 - 3yL+y; - 2 - 3y; +yL]} 

(1 -Y? 

where U, is the velocity at section 1 in the upper layer. For a very deep layer when 
1-y;= l--y' 2r 

where Uu is the velocity in the upper layer a t  0 1. Thus for the same y;, y; and U,  
the upper flow reduces the loss in the lower layer. I n  a free-surface regime for small 
depth changes the small loss of energy not accounted for by friction on the lower 
surface is radiated away from the jump by the formation of waves. Since (5) suggests 
that the losses are decreased by a flow in the upper layer, it might be expected that 
this regime would be extended to greater height differences when the upper layer is 
flowing. 

The conservation relationship equivalent to (3) obtained using Yih & Guha's 
assumption is 
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This equation contains variables from both sides of the jump and is therefore not 
a simple conservation relationship, and indeed i t  is this fact that leads to the problems 
of multiple solutions that have been explored by Yih & Guha (1955), Mehrotra (1973) 
and Mehrotra & Kelley (1973). Further, the head loss over the jump obtained using 
Yih & Guha's solution is given by Su (1976) as 

I n  this solution the upper- and lower-layer losses are independent and there is always 
an energy gain in the upper layer. The energy gain appears to  be caused by the use 
of the assumption of hydrostatic pressure on the curved face of the jump, and this 
gain implies that the approximation slightly underestimates the force on the sloping 
face. 

At this stage i t  is worth noting that for the above theory i t  is not necessary to 
assume which layer is contracting. This contrasts with the Chu & Baddour theory, 
where an assumption about the layers is necessary. 

Before discussing the solutions, i t  is necessary to  obtain the value of critical depths 
in the duct. These may be obtained by using the condition for no upstream 
propagation of small long waves, or, for fixed qr and S,, by determining the maxi- 
mum qe from (3). This leads to  

where 
F;+p,Ft = 1, 

Further, since in this case the jump is infinitely small (i.e. yi x yi x ye), the same 

With the Boussinesq approximation, (8) may be writzten as 
conditions are obtained from both sets of assumptions. 

1 
q:[-+---] Yc (1-Y;)3 = 1, (9) 

where q$ = q2/g'D3, and y; is the critical depth. This condition limits the region for 
which solutions of (3) or (6) are possible. 

3. The jump behind the moving obstacle 
3.1. Theory 

When an obstacle on the floor a t  one end of a tank containing a two-layered fluid 
is moved then after a short time a steady jump is established (figure l b ) .  Initially 
there is a disturbance (Houghton & Kasahara 1968) behind the jump which will move 
to the wall, be reflected from it and move back to the jump where it is absorbed. 
After this the jump appears steady and the conditions downstream of it are no mean 
velocity in either layer (figure 3). Thus, if we move with the jump speed U,, the 
discharge ratio is given by 

qu - 1-Yi 
Pe Y; . !I,=-- 

Substituting this value into (3) yields 
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FIGURE 3. The nomenclature for the jump behind an obstacle moving to the left. 

For this case the limiting critical conditions downstream of the jump are given by 

where yLc is the critical depth downstream of the jump. Equation (1  1)  and the limits 
of its applicability, equation (12), are plotted in figure 4. Equation (10) may also be 
substituted into (6), and yields 

This is also plotted in figure 4, and it can be seen that, in spite of the difference in 
the form of (11)  and (13), the difference in the predictions is extremely small. 
Discussion of this is postponed until after describing the first set of experiments. 

3.2. Experiments 
All the experiments described in this and in $4 were carried out in a flume with a 
length, depth and breadth of respectively 3.7, 0.5, 0.2 m, and the experiments were 
observed and photographed on a shadowgraph screen. The flume was filled with fresh 
water and the lower layer was introduced slowly under the fresh water. It flowed as 
a viscous gravity current along the horizontal floor. Care was taken to remove the 
mixed region a t  the head of the lower layer and to maintain a sharp interface. 

Once the lower layer had reached an appropriate depth the downstream jump was 
produced. 

For large downstream jumps this was done by towing the obstacle along the bottom 
of the flume through the lower layer. At the commencement of movement of the 
obstacle the level of the interface downstream of the obstacle dropped (Houghton 
& Kasahara 1968), but after a short time an equilibrium level and a downstream jump 
were established as in figure 3. A disturbance also propagates upstream, and this was 
eventually reflected off the far end of the flume. When this reflection reached the 
obstacle the flow became unsteady and the experiment was terminated. The 
movement of the jump and its depth were photographed and the depths and velocity 
of the jump were obtained from the negatives. 

For small jumps a continuous flow was established in the lower layer of the flume, 
and this was suddenly stopped by either a downstream gate or a valve. The movement 
of the jump back along the flume was then timed and the depths measured by marking 
them on the shadowgraph screen. 

No attempt was made to measure the velocity distribution or density distribution 
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FIGURE 4. The theoretical curves and the experimental points for the jump behind a moving 
obstacle : -, theory based on the energy-conserving assumption in the contracting layer; ----, 
theory based on the hydrostatic assumption (Yih & Guha 1955); 0 0.03, experimental points and 
the experimental value of y J D .  

in the layer prior to the jump, and it is apparent that, because of bottom friction 
and the shear on the upper surface, these would differ from the rectangular 
distributions assumed. Mixing due to Kelvin-Helmholtz instabilities in the super- 
critical region of the flow did not occur during the experiment. 

The experimental points are plotted in figure 4, and, in view of the uncertainties 
discussed above and the error bands, the agreement with either theory is reasonable. 
This suggest that  the magnitude of the change of energy (either positive or negative) 
in the upper layer is small. It is apparent from (7)  that this is reasonable for weak 
jumps (y i  - y ;  small) and for the particular case of strong jumps where the velocity 
ahead of and relative to the jump in the upper layer is small (u, 4 1 ) .  These conditions 
were satisfied in this set of experiments and indeed appear to have been satisfied in 
the strong jump experiment carried out by Yih & Guha (1955). 

4. The jump advancing into two stationary layers 
4.1. Theory 

This case is illustrated in figure 5, and if we again select axes moving with the jump 
velocity the discharge ratio is determined by the upstream conditions as 
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FIGURE 5 .  The nomenclature for the jump moving into a stationary two-layered fluid. 
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FIGURE 6. The theoretical curves and experimental points for the jump advancing into a two-layered 
flow. Theory: --, theory based on energy conservation in the upper layer; ft, gravity-current 
results (Simpson & Britter 1979). Experiment: yl /D = 0.027: A, smooth waves behind the jump;  
A, broken waves behind the jump; 4, appears as a gravity current; y,/D = 0.06: El, smooth waves 
behind the jump; m, broken waves behind the jump;  #, appearsas agravity current; y,/D = 0.12: 
0. smooth waves behind the jump;  0 .  broken waves behind the jump. 

Depending on the assumption adopted, this may be substituted into either (3) or (6). 
For the range of experiment possible either is satisfactory, and for this work (14) is 
substituted into (3), yielding 

This relationship is plotted in figure 6. 
Critical conditions a t  $ 2  would limit the solution. However, before this limit is 

reached and before there is any significant difference between the results of the 
different assumptions, the value of y2/y1 becomes sufficiently large that a shear 
instability develops on the first wave of the undular jump. This mixing, which first 
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FIGURE 7 .  One of the methods used in obtaining a jump advancing into stationary layers: ( a )  the 
initial set-up; ( b )  the flow once the gate was lifted and the experiment commenced. 

occurs a t  the crest of the wave, controls the velocity of the jump, and in the limit 
the flow behaves as a gravity current. It is therefore appropriate to plot the 
gravity-current results from Simpson & Britter (1979) on figure 6. Since the surge 
cannot move faster than the case where y1 is zero, this curve provides the upper limit 

4.2. Experiments 
The same technique was used as in $3.2, but in this case the upstream jump was 
observed. For depths such that y1 x yz the velocity of the surge was obtained by 
timing the start of the movement of dye patches in the lower layer. 

For large depth differences two techniques were used. For small total depths D the 
jump that moved ahead of the towed obstacle was observed. However, for large total 
depths this surge moved ahead of the obstacle so rapidly that steady-state 
measurements could not be obtained. 

For these large depths the flume was set up as in figure 7(a), and when the gate 
was partially removed (figure 7 b) a steady exchange flow controlled by the final gate 
position commenced. This enabled satisfactory steady-state observations to be made. 

In  all the experiments the density difference between the two layers compared with 
the density difference between the upper fluid and air was small enough for the free 
surface in the experiment to be treated as the solid surface used in the theory. 

The change in the character of the flow is best illustrated in figure 8.  For the flows in 
this figure the depth of flow was kept a t  27 cm, the density difference was main- 
tained giving g' = 11.5 cm/s2, and the gate was raised to 8 ern above the floor. For a 
depth ahead of the jump of 1.75 cm the jump was smooth and undular (figure 8 a ) .  
However, when the depth was reduced to 0.75 cm the shear instability on the rear 
face of the first wave became pronounced and there was considerable mixing. This 
is shown by the behaviour of the dye that was originally in the stationary lower layer 
of figure 8 ( b ) .  Finally, when the lower layer was reduced to 0.3 cm the flow appears 
as a well-defined gravity current (figure 1 a ) .  

Experiments were carried out with the values of y ;  = 0.027,0.06 and 0.12. For the 
very small depth changes in which dye was used to determine the surge velocity the 
experimental points lie below the theoretical curve. It is believed that this is because 

to U,/(dY,)t. 
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(b ) 
FIGURE 8. The jumps produced by the method of figure 7 .  I n  both cases the total depth y1 + yz 
of the layers is 27 cm, g’ is 11.5 cm/sz and the gate was opened t o  8 cm: (a )  y1 = 1.75 cm; ( b )  
y1 = 0.76 cm. 

Maximum value of 

0.027 2.2 2.7 
0.06 1 .7  2.2 
0.01 1 1.6 1.9 

Minimum value of 
Y; yJyl with no mixing yz/yl with mixing 

TABLE 1 

of viscous effects. When the undular jump was smooth and sufficiently large for the 
mean downstream depth to be measured the agreement between theory and 
experiment is reasonable. 

Table 1 gives for each yi the experimentally determined maximum value of y2/yI 
for no observable mixing behind the first wave and the minimum value of y2/y1 for 
observable mixing. 

The lower minimum a t  the larger values of y l  is presumably due to the greater shear 
in these cases. It is to be noted that after the mixing first occurs (which is a value 
of y2/y1 of approximately two) the value of U,/(gy,); is dominated by this mixing, 
and in many cases the flow resembles a gravity current. 

5. The stationary entraining internal jump 
5.1. Theory 

As the height of the towed obstacle En the first set of experiments increases, 
Kelvin-Helmholtz instabilities occur and mixing will take place prior to the jump 
conditions (as determined by either set of assumptions) being satisfied. Indeed the 
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FIGURE 9. The nomenclature for the stationary jump:  ----, the streamline dividing the 
entrained fluid and the freestream. 

amount of mixing taking place is that quantity necessary to change the upstream 
flow values to those which satisfy the jump conditions. This implies that the amount 
of mixing is determined by these conditions. 

Where flow exits from a duct (figure 9) the shear layer immediately downstream 
of the duct causes this mixing, and for a given downstream control the jump is 
stationary. For this case when there is no flow in the upper layer the control of the 
mixing was investigated by Wilkinson & Wood (1971) and Stefan & Hayakawa (1972). 
The use of the energy-conservation assumption enables this work to be extended to 
the case where there is a flow in the upper layer. For this flow (figure 9), provided 
that an allowance is made for the change in density and the discharge in the lower 
layer, (1) is still applicable. Further, the Bernoulli equation is applicable between 
sections 0 and 2 on the streamlines which do not enter the jump. Thus, with these 
modifications, (3) is still applicable. 

If the density differences are sufficiently small for the Boussinesq approximation 
to be reasonable, then the equation of continuity of the modified gravity g' may be 
written as 

q / g '  = q A >  (16) 

where q A ,  the flux ofg', is a constant. Substituting into (3) and defining the discharges 
in the layers a t  sections 0 and 2 as qeo, quo, and qez, quz respectively, (3) becomes 

Downstream of $ 2  the flow may be controlled by a weir or contraction, and this 
will determine the particular conditions a t  $2. It will be assumed that the condition 
at  this section is given by 

Finally, in a duct we have 

Q f O + Q " O  = Q f 2 + Q U 2 .  (19) 

The equations can be solved, but the results for the most interesting case where 
the duct is very deep can be obtained in a very simple manner. 
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FIGURE 10. The results for the stationary jump with D = co. The ratio of the flow in the lower 
layer downstream of the jump to that upstream of the jump for a range of downstream Froude 
number. The upstream Froude number is 25 and the non-dimensional velocity U,/& in the upper 
layer is varied from 0 to  0.6. 

Equation (18) can be written as 

and 

then 

For a very deep duct where U,, z U,,, (17) becomes 

For given upstream conditions F,,, qA and a given flow U,, in the upper layer, the 
Froude number F2 in the subcritical region determines the discharge ratio qez/qeo 
in the lower layer uniquely. The maximum entrainment can be obtained by 
differentiating (22), and this maximum occurs when 

= [ 1 + TI1 . (23) 

Equation ( 2 2 )  is plotted for an upstream Froude number of 25 and for a range of 
values of U,(,/d in figure 10, and the form of the curve is interesting. For the case 
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where U u o / q ~  is zero, Wilkinson & Wood (1971) by using a weir as a control were 
able to verify the shape of the curve. Further dye streaks in the upper layer showed 
that the decrease in entrainment with decreasing F, was caused by the roller region 
in figure 2 extending towards the inlet and covering a greater length of the 
entrainment zone. 

It is apparent that for a fixed downstream Froude number F, a velocity in the upper 
layer forces the roller region downstream and by exposing more of the entraining zone 
increases the total entrainment. 

The trend agrees with the few observations available. However, i t  was observed 
by Bewick (1974) that  the mixing downstream of the roller region was incomplete 
and that the velocit,y and density distribution in the region varies with both the 
downstream and upstream Froude numbers and the value of Uuo/d.  The shapes of 
these distributions would need to be measured and used for complete verification of 
this theory. 

6. Discussion 
I n  the experimental range the two theories give similar results. This suggests that 

within this range the effects of the shear and of the dynamic portion of the pressure 
on the interface both of which are neglected in the theory of Yih & Guha (1955) are 
indeed small. This implies that  any energy change in the upper layer is small, and 
thus it is not surprising that the Chu & Baddour (1977) theory, which assumes no 
energy change, gives similar results. 

Both theories break down when the shear on the interface becomes large. The 
condition for small shear on the interface is different for each of the boundary 
conditions discussed. For the hump in the lee of a towed obstacle, this condition was 
always satisfied. However, for the jump advancing into stationary layers it was only 
satisfied when y2/y1 was less than a particular value, and for the stationary jump 
the condition was satisfied when the downstream control conditions exactly satisfied 
the no-mixing jump equation. When there is entrainment then for this latter case 
an approximate estimate of the amount of entrainment can be obtained by computing 
the entrainment necessary to change the upstream conditions to those which satisfy 
the jump relationship. This is carried out in a very simple manner if the assumption 
of energy conservation in the contracting layer is used. 

I. R. Wood thanks the Natural Environment Research Council and ,J.  E. Simpson 
thanks the Central Electricity Generating Board for financial support. The authors 
would like to thank J. Rottman for pointing out the possibility of the energy gain 
in Yih's solution and to a referee for drawing our attention to the work of Chu & 
Baddour (1977).  
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